Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Front Cell Infect Microbiol ; 13: 1192512, 2023.
Article in English | MEDLINE | ID: covidwho-20237911

ABSTRACT

Background: Immune-evading severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are emerging continuously. The clinical effectiveness of monoclonal antibody agents that exhibit decreased in vitro activity against SARS-CoV-2 variants needs to be elucidated. Methods: A nationwide, multicenter, retrospective cohort study was designed to evaluate the effectiveness of regdanvimab, an anti-SARS-CoV-2 monoclonal antibody agent. Regdanvimab was prescribed in South Korea before and after the emergence of the delta variant, against which the in vitro activity of regdanvimab was decreased but present. Mild to moderate coronavirus 2019 (COVID-19) patients with risk factors for disease progression who were admitted within seven days of symptom onset were screened in four designated hospitals between December 2020 and September 2021. The primary outcomes, O2 requirements and progression to severe disease within 21 days of admission, were compared between the regdanvimab and supportive care groups, with a subgroup analysis of delta variant-confirmed patients. Results: A total of 2,214 mild to moderate COVID-19 patients were included, of whom 1,095 (49.5%) received regdanvimab treatment. In the analysis of the total cohort, significantly fewer patients in the regdanvimab group than the supportive care group required O2 support (18.4% vs. 27.1%, P < 0.001) and progressed to severe disease (4.0% vs. 8.0%, P < 0.001). In the multivariable analysis, regdanvimab was significantly associated with a decreased risk for O2 support (HR 0.677, 95% CI 0.561-0.816) and progression to severe disease (HR 0.489, 95% CI 0.337-0.709). Among the 939 delta-confirmed patients, O2 support (21.5% vs. 23.5%, P = 0.526) and progression to severe disease (4.2% vs. 7.3%, P = 0.055) did not differ significantly between the regdanvimab and supportive care groups. In the multivariable analyses, regdanvimab treatment was not significantly associated with a decreased risk for O2 support (HR 0.963, 95% CI 0.697-1.329) or progression to severe disease (HR 0.665, 95% CI 0.349-1.268) in delta-confirmed group. Conclusions: Regdanvimab treatment effectively reduced progression to severe disease in the overall study population, but did not show significant effectiveness in the delta-confirmed patients. The effectiveness of dose increment of monoclonal antibody agents should be evaluated for variant strains exhibiting reduced susceptibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Retrospective Studies , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral
2.
Clin Immunol ; 251: 109628, 2023 06.
Article in English | MEDLINE | ID: covidwho-2316168

ABSTRACT

A dysregulated hyperinflammatory response is a key pathogenesis of severe COVID-19, but optimal immune modulator treatment has not been established. To evaluate the clinical effectiveness of double (glucocorticoids and tocilizumab) and triple (plus baricitinib) immune modulator therapy for severe COVID-19, a retrospective cohort study was conducted. For the immunologic investigation, a single-cell RNA sequencing analysis was performed in serially collected PBMCs and neutrophil specimens. Triple immune modulator therapy was a significant factor in a multivariable analysis for 30-day recovery. In the scRNA-seq analysis, type I and II IFN response-related pathways were suppressed by GC, and the IL-6-associated signature was additionally downregulated by TOC. Adding BAR to GC and TOC distinctly downregulated the ISGF3 cluster. Adding BAR also regulated the pathologically activated monocyte and neutrophil subpopulation induced by aberrant IFN signals. Triple immune modulator therapy in severe COVID-19 improved 30-day recovery through additional regulation of the aberrant hyperinflammatory immune response.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , Retrospective Studies , Treatment Outcome
3.
Clinical immunology (Orlando, Fla) ; 2023.
Article in English | EuropePMC | ID: covidwho-2298057

ABSTRACT

A dysregulated hyperinflammatory response is a key pathogenesis of severe COVID-19, but optimal immune modulator treatment has not been established. To evaluate the clinical effectiveness of double (glucocorticoids and tocilizumab) and triple (plus baricitinib) immune modulator therapy for severe COVID-19, a retrospective cohort study was conducted. For the immunologic investigation, a single-cell RNA sequencing analysis was performed in serially collected PBMCs and neutrophil specimens. Triple immune modulator therapy was a significant factor in a multivariable analysis for 30-day recovery. In the scRNA-seq analysis, type I and II IFN response-related pathways were suppressed by GC, and the IL-6-associated signature was additionally downregulated by TOC. Adding BAR to GC and TOC distinctly downregulated the ISGF3 cluster. Adding BAR also regulated the pathologically activated monocyte and neutrophil subpopulation induced by aberrant IFN signals. Triple immune modulator therapy in severe COVID-19 improved 30-day recovery through additional regulation of the aberrant hyperinflammatory immune response. Graphical Unlabelled Image

4.
Frontiers in immunology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2287533

ABSTRACT

Introduction The effect of tixagevimab/cilgavimab (Evusheld™;AstraZeneca, UK) should be evaluated in the context of concurrent outbreak situations. Methods For serologic investigation of tixagevimab/cilgavimab during the BA.5 outbreak period, sera of immunocompromised (IC) hosts sampled before and one month after tixagevimab/cilgavimab administration and those of healthcare workers (HCWs) sampled one month after a 3rd shot of COVID-19 vaccines, five months after BA.1/BA.2 breakthrough infection (BI), and one month after BA.5 BI were investigated. Semi-quantitative anti-spike protein antibody (Sab) test and plaque reduction neutralizing test (PRNT) against BA.5 were performed. Results A total of 19 IC hosts (five received tixagevimab/cilgavimab 300 mg and 14 received 600 mg) and 41 HCWs (21 experienced BA.1/BA.2 BI and 20 experienced BA.5 BI) were evaluated. Baseline characteristics did not differ significantly between IC hosts and HCWs except for age and hypertension. Sab significantly increased after tixagevimab/cilgavimab administration (median 130.2 BAU/mL before tixagevimab/cilgavimab, 5,665.8 BAU/mL after 300 mg, and 10,217 BAU/mL after 600 mg;both P < 0.001). Sab of one month after the 3rd shot (12,144.2 BAU/mL) or five months after BA.1/BA.2 BI (10,455.8 BAU/mL) were comparable with that of tixagevimab/cilgavimab 600 mg, while Sab of one month after BA.5 BI were significantly higher (22,216.0 BAU/mL;P < 0.001). BA.5 PRNT ND50 significantly increased after tixagevimab/cilgavimab administration (median ND50 29.6 before tixagevimab/cilgavimab, 170.8 after 300 mg, and 298.5 after 600 mg;both P < 0.001). The ND50 after tixagevimab/cilgavimab 600 mg was comparable to those of five months after BA.1 BI (ND50 200.9) while ND50 of one month after the 3rd shot was significantly lower (ND50 107.6;P = 0.019). The ND50 of one month after BA.5 BI (ND50 1,272.5) was highest among tested groups, but statistical difference was not noticed with tixagevimab/cilgavimab 600 mg. Conclusion Tixagevimab/cilgavimab provided a comparable neutralizing activity against the BA.5 with a healthy adult population who were vaccinated with a 3rd shot and experienced BA.1/BA.2 BI.

5.
Front Immunol ; 14: 1139980, 2023.
Article in English | MEDLINE | ID: covidwho-2287534

ABSTRACT

Introduction: The effect of tixagevimab/cilgavimab (Evusheld™; AstraZeneca, UK) should be evaluated in the context of concurrent outbreak situations. Methods: For serologic investigation of tixagevimab/cilgavimab during the BA.5 outbreak period, sera of immunocompromised (IC) hosts sampled before and one month after tixagevimab/cilgavimab administration and those of healthcare workers (HCWs) sampled one month after a 3rd shot of COVID-19 vaccines, five months after BA.1/BA.2 breakthrough infection (BI), and one month after BA.5 BI were investigated. Semi-quantitative anti-spike protein antibody (Sab) test and plaque reduction neutralizing test (PRNT) against BA.5 were performed. Results: A total of 19 IC hosts (five received tixagevimab/cilgavimab 300 mg and 14 received 600 mg) and 41 HCWs (21 experienced BA.1/BA.2 BI and 20 experienced BA.5 BI) were evaluated. Baseline characteristics did not differ significantly between IC hosts and HCWs except for age and hypertension. Sab significantly increased after tixagevimab/cilgavimab administration (median 130.2 BAU/mL before tixagevimab/cilgavimab, 5,665.8 BAU/mL after 300 mg, and 10,217 BAU/mL after 600 mg; both P < 0.001). Sab of one month after the 3rd shot (12,144.2 BAU/mL) or five months after BA.1/BA.2 BI (10,455.8 BAU/mL) were comparable with that of tixagevimab/cilgavimab 600 mg, while Sab of one month after BA.5 BI were significantly higher (22,216.0 BAU/mL; P < 0.001). BA.5 PRNT ND50 significantly increased after tixagevimab/cilgavimab administration (median ND50 29.6 before tixagevimab/cilgavimab, 170.8 after 300 mg, and 298.5 after 600 mg; both P < 0.001). The ND50 after tixagevimab/cilgavimab 600 mg was comparable to those of five months after BA.1 BI (ND50 200.9) while ND50 of one month after the 3rd shot was significantly lower (ND50 107.6; P = 0.019). The ND50 of one month after BA.5 BI (ND50 1,272.5) was highest among tested groups, but statistical difference was not noticed with tixagevimab/cilgavimab 600 mg. Conclusion: Tixagevimab/cilgavimab provided a comparable neutralizing activity against the BA.5 with a healthy adult population who were vaccinated with a 3rd shot and experienced BA.1/BA.2 BI.


Subject(s)
Breakthrough Infections , COVID-19 , Adult , Humans , COVID-19 Vaccines
6.
Antimicrob Agents Chemother ; 67(1): e0045222, 2023 01 24.
Article in English | MEDLINE | ID: covidwho-2266524

ABSTRACT

Although several antiviral agents have become available for coronavirus disease 2019 (COVID-19) treatment, oral drugs are still limited. Camostat mesylate, an orally bioavailable serine protease inhibitor, has been used to treat chronic pancreatitis in South Korea, and it has an in vitro inhibitory potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study was a double-blind, randomized, placebo-controlled, multicenter, phase 2 clinical trial in mild to moderate COVID-19 patients. We randomly assigned patients to receive either camostat mesylate (DWJ1248) or placebo orally for 14 days. The primary endpoint was time to clinical improvement of subject symptoms within 14 days, measured using a subjective 4-point Likert scale. Three hundred forty-two patients were randomized. The primary endpoint was nonsignificant, where the median times to clinical improvement were 7 and 8 days in the camostat mesylate group and the placebo group, respectively (hazard ratio [HR] = 1.09; 95% confidence interval [CI], 0.84 to 1.43; P = 0.50). A post hoc analysis showed that the difference was greatest at day 7, without reaching significance. In the high-risk group, the proportions of patients with clinical improvement up to 7 days were 45.8% (50/109) in the camostat group and 38.4% (40/104) in the placebo group (odds ratio [OR] = 1.33; 95% CI, 0.77 to 2.31; P = 0.31); the ordinal scale score at day 7 improved in 20.0% (18/90) of the camostat group and 13.3% (12/90) of the placebo group (OR = 1.68; 95% CI, 0.75 to 3.78; P = 0.21). Adverse events were similar in the two groups. Camostat mesylate was safe in the treatment of COVID-19. Although this study did not show clinical benefit in patients with mild to moderate COVID-19, further clinical studies for high-risk patients are needed. (This trial was registered with ClinicalTrials.gov under registration no. NCT04521296).


Subject(s)
COVID-19 , Humans , Adult , SARS-CoV-2 , Guanidines , Esters , Double-Blind Method , Treatment Outcome
7.
Front Med (Lausanne) ; 9: 988559, 2022.
Article in English | MEDLINE | ID: covidwho-2287528

ABSTRACT

Background: The impact of nirmatrelvir/ritonavir treatment on shedding of viable virus in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Methods: A prospective cohort study evaluating mildly ill COVID-19 patients was conducted. Virologic responses were compared between nirmatrelvir/ritonavir-treatment and supportive care groups. Risk factors and relevant clinical factors for shedding of viable virus were investigated. Results: A total of 80 COVID-19 patients were enrolled and 222 sputum specimens were collected. Ten patients were dropped during follow-up, and 33 patients in the nirmatrelvir/ritonavir and 37 in the supportive care groups were compared. The median age was 67 years, and 67% were male. Clinical characteristics were similar between groups. Viral loads decreased significantly faster in the nirmatrelvir/ritonavir group compared with the supportive care group (P < 0.001), and the slope was significantly steeper (-2.99 ± 1.54 vs. -1.44 ± 1.52; P < 0.001). The duration of viable virus shedding was not statistically different between groups. In the multivariable analyses evaluating all collected specimens, male gender (OR 2.51, 95% CI 1.25-5.03, P = 0.010), symptom score (OR 1.41, 95% CI 1.07-1.87, P = 0.015), days from symptom onset (OR 0.72, 95% CI 0.59-0.88, P = 0.002), complete vaccination (OR 0.09, 95% CI 0.01-0.87, P = 0.038), and BA.2 subtype (OR 0.49, 95% CI 0.26-0.91, P = 0.025) were independently associated with viable viral shedding, while nirmatrelvir/ritonavir treatment was not. Conclusion: Nirmatrelvir/ritonavir treatment effectively reduced viral loads of SARS-CoV-2 Omicron variants but did not decrease the duration of viable virus shedding.

8.
Epidemiol Health ; 44: e2022034, 2022.
Article in English | MEDLINE | ID: covidwho-2264816

ABSTRACT

OBJECTIVES: Many countries have authorized the emergency use of oral antiviral agents for patients with mild-to-moderate cases of coronavirus disease 2019 (COVID-19). We assessed the cost-effectiveness of these agents for reducing the number of severe COVID-19 cases and the burden on Korea's medical system. METHODS: Using an existing model, we estimated the number of people who would require hospital/intensive care unit (ICU) admission in Korea in 2022. The treatment scenarios included (1) all adult patients, (2) elderly patients only, and (3) adult patients with underlying diseases only, compared to standard care. Based on the current health system capacity, we calculated the incremental costs per severe case averted and hospital admission for each scenario. RESULTS: We estimated that 236,510 COVID-19 patients would require hospital/ICU admission in 2022 with standard care only. Nirmatrelvir/ritonavir (87% efficacy) was predicted to reduce this number by 80%, 24%, and 17% when targeting all adults, adults with underlying diseases, and elderly patients (25, 8, and 4%, respectively, for molnupiravir, with 30% efficacy). Nirmatrelvir/ritonavir use is likely to be cost-effective, with predicted costs of US$8,878, US$8,964, and US$1,454, per severe patient averted for the target groups listed above, respectively, while molnupiravir is likely to be less cost-effective, with costs of US$28,492, US$29,575, and US$7,915, respectively. CONCLUSIONS: In Korea, oral treatment using nirmatrelvir/ritonavir for symptomatic COVID-19 patients targeting elderly patients would be highly cost-effective and would substantially reduce the demand for hospital admission to below the capacity of the health system if targeted to all adult patients instead of standard care.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adult , Aged , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Cost-Benefit Analysis , Humans , Ritonavir/therapeutic use
9.
Exp Mol Med ; 55(3): 653-664, 2023 03.
Article in English | MEDLINE | ID: covidwho-2264624

ABSTRACT

We do not yet understand exactly how corticosteroids attenuate hyperinflammatory responses and alleviate high-risk coronavirus disease 2019 (COVID-19). We aimed to reveal the molecular mechanisms of hyperinflammation in COVID-19 and the anti-inflammatory effects of corticosteroids in patients with high-risk COVID-19. We performed single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from three independent COVID-19 cohorts: cohort 1 was used for comparative analysis of high-risk and low-risk COVID-19 (47 PBMC samples from 28 patients), cohort 2 for longitudinal analysis during COVID-19 (57 PBMC samples from 15 patients), and cohort 3 for investigating the effects of corticosteroid treatment in patients with high-risk COVID-19 (55 PBMC samples from 13 patients). PBMC samples from healthy donors (12 PBMC samples from 12 donors) were also included. Cohort 1 revealed a significant increase in the proportion of monocytes expressing the long noncoding RNAs NEAT1 and MALAT1 in high-risk patients. Cohort 2 showed that genes encoding inflammatory chemokines and their receptors were upregulated during aggravation, whereas genes related to angiogenesis were upregulated during improvement. Cohort 3 demonstrated downregulation of interferon-stimulated genes (ISGs), including STAT1, in monocytes after corticosteroid treatment. In particular, unphosphorylated STAT-dependent ISGs enriched in monocytes from lupus patients were selectively downregulated by corticosteroid treatment in patients with high-risk COVID-19. Corticosteroid treatment suppresses pathologic interferon responses in monocytes by downregulating STAT1 in patients with high-risk COVID-19. Our study provides insights into the mechanisms underlying COVID-19 aggravation and improvement and the effects of corticosteroid treatment.


Subject(s)
COVID-19 , Leukocytes, Mononuclear , Humans , Leukocytes, Mononuclear/metabolism , Interferons , Monocytes/metabolism , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
10.
Epidemiol Health ; : e2022085, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2246598

ABSTRACT

Objectives: After the third wave of coronavirus disease (COVID-19), by mid-February 2021, approximately 0.16% of the population was confirmed positive, which appeared to be one of the lowest rates worldwide at that time. However, asymptomatic transmission poses a challenge for COVID-19 surveillance. Therefore, a community-based serosurvey of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was conducted to understand the effectiveness of Korea's strong containment strategy. Methods: We collected 5,002 residual sera samples from January 30 to March 3, 2021 from 265 medical facilities in Seoul, 346 in Kyunggi-do' and 57 in Incheon. Among them, 60 samples from tertiary institutions were excluded. We defined the sub-regions according to the addresses of the medical facilities where the specimens were collected. Elecsys Anti-SARS-CoV-2 was used for the screening test, and positivity was confirmed using the SARS-CoV-2 sVNT Kit. Prevalence was estimated using sampling weight and the Wilson score interval for a binomial proportion with a 95% confidence interval. Results: Among the 4,942 specimens, 32 and 25 tested positive for COVID-19 in the screening and confirmatory tests, respectively. The overall crude prevalence of SARS-CoV-2 antibody was 0.51%. The population-adjusted overall prevalence was 0.55% in women and 0.38% in men. The region-specific estimation was 0.67% and 0.30% in Gyeonggi-do and Seoul, respectively. No positive cases were detected in Incheon. Conclusion: The proportion of undetected cases in South Korea remains low. Therefore, an infection control strategy with exhaustive tracing and widespread pre-emptive testing appears to be effective in containing the spread of the virus in the community.

11.
Vaccine ; 41(10): 1694-1702, 2023 03 03.
Article in English | MEDLINE | ID: covidwho-2227823

ABSTRACT

BACKGROUND: Comparative analyses of SARS-CoV-2-specific immune responses elicited by diverse prime-boost regimens are required to establish efficient regimens for the control of COVID-19. METHOD: In this prospective observational cohort study, spike-specific immunoglobulin G (IgG) and neutralizing antibodies (nAbs) alongside spike-specific T-cell responses in age-matched groups of homologous BNT162b2/BNT162b2 or AZD1222/AZD1222 vaccination, heterologous AZD1222/BNT162b2 vaccination, and prior wild-type SARS-CoV-2 infection/vaccination were evaluated. RESULTS: Peak immune responses were achieved after the second vaccine dose in the naïve vaccinated groups and after the first dose in the prior infection/vaccination group. Peak titers of anti-spike IgG and nAb were significantly higher in the AZD1222/BNT162b2 vaccination and prior infection/vaccination groups than in the BNT162b2/BNT162b2 or AZD1222/AZD1222 groups. However, the frequency of interferon-γ-producing CD4+ T cells was highest in the BNT162b2/BNT162b2 vaccination group. Similar results were observed in the analysis of polyfunctional T cells. When nAb and CD4+T-cell responses against the Delta variant were analyzed, the prior infection/vaccination group exhibited higher responses than the groups of other homologous or heterologous vaccination regimens. CONCLUSION: nAbs are efficiently elicited by heterologous AZD1222/BNT162b2 vaccination, as well as prior infection/vaccination, whereas spike-specific CD4+T-cell responses are efficiently elicited by homologous BNT162b2 vaccination. Variant-recognizing immunity is more efficiently generated by prior infection/vaccination than the other homologous or heterologous vaccination regimens.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Antibodies, Viral , BNT162 Vaccine , ChAdOx1 nCoV-19 , Immunoglobulin G , Prospective Studies , SARS-CoV-2 , Vaccination , T-Lymphocytes/immunology , Immunologic Memory
12.
Am J Transplant ; 23(4): 565-572, 2023 04.
Article in English | MEDLINE | ID: covidwho-2165042

ABSTRACT

Diminished immune response to coronavirus disease 2019 (COVID-19) vaccines and breakthrough infection (BI) is a major concern for solid organ transplant recipients. Humoral and cellular immune responses of kidney transplant (KT) recipients after a third COVID-19 vaccination were investigated compared to matched health care workers. Anti-severe acute respiratory syndrome coronavirus 2 spike protein antibody and severe acute respiratory syndrome coronavirus 2 specific interferon-gamma releasing assay (IGRA) were assessed. A total of 38 KT recipients, including 20 BI and 18 noninfection, were evaluated. In the KT BI group, antibody titers were significantly increased (median 5 to 724, binding antibody units/mL (P = 0.002) after the third vaccination, but IGRA responses were negligible. After BI, antibody titers increased (median 11 355 binding antibody unit/mL; P < 0.001) and there was a significant increase of IGRA responses to spike proteins (Spike1-Nil, median 0.05 to 0.41 IU/mL; P = 0.009). Antibody titers and IGRA responses were significantly higher in the BI than in the noninfection group after 6 months. Immune responses were stronger in the health care worker than in the KT cohort, but the gap became narrower after BI. In conclusion, KT recipients who experienced BI after 3 COVID-19 vaccinations acquired augmented humoral and cellular immune responses.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Breakthrough Infections , Kidney Transplantation/adverse effects , Immunity, Cellular , Antibodies, Viral , Transplant Recipients , Vaccination , Immunity, Humoral
13.
Microbiol Spectr ; : e0266922, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2078749

ABSTRACT

Estimating neutralizing activity in vaccinees is crucial for predicting the protective effect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the plaque reduction neutralization test (PRNT) requires a biosafety level 3 facility, it would be advantageous if surrogate virus neutralization test (sVNT) assays and binding assays could predict neutralizing activity. Here, five different assays were evaluated with respect to the PRNT in vaccinees: three sVNT assays from GenScript, Boditech Med, and SD Biosensor and two semiquantitative binding assays from Roche and Abbott. The vaccinees were subjected to three vaccination protocols: homologous ChAdOx1, homologous BNT162b2, and heterologous administration. The ability to predict a 50% neutralizing dose (ND50) of ≥20 largely varied among the assays, with the binding assays showing substantial agreement (kappa, ~0.90) and the sVNT assays showing relatively poor performance, especially in the ChAdOx1 group (kappa, 0.33 to 0.97). The ability to predict an ND50 value of ≥118.25, indicating a protective effect, was comparable among different assays. Applying optimal cutoffs based on Youden's index, the kappa agreements were greater than 0.60 for all assays in the total group. Overall, relatively poor performance was demonstrated in the ChAdOx1 group, owing to low antibody titers. Although there were intra-assay differences related to the vaccination protocols, as well as interassay differences, all assays demonstrated fair performance in predicting the protective effect using the new cutoffs. This study demonstrates the need for a different cutoff for each assay to appropriately determine a higher neutralizing titer and suggests the clinical feasibility of using various assays for estimation of the protective effect. IMPORTANCE The coronavirus disease 2019 (COVID-19) pandemic continues to last, despite high COVID-19 vaccination rates. As many people experience breakthrough infection after prior infection and/or vaccination, estimating the neutralization activity and predicting the protective effect are major issues of concern. However, since standard neutralization tests are not available in most clinical laboratories, it would be beneficial if commercial assays could predict these aspects. In this study, we evaluated the performance of three sVNT assays and two semiquantitative binding assays targeting the receptor-binding domain with respect to the PRNT. Our results suggest that these assays could be used for predicting the protective effect by adjusting the cutoffs.

14.
Front Immunol ; 13: 968105, 2022.
Article in English | MEDLINE | ID: covidwho-2065511

ABSTRACT

Introduction: Despite vaccine development, the COVID-19 pandemic is ongoing due to immunity-escaping variants of concern (VOCs). Estimations of vaccine-induced protective immunity against VOCs are essential for setting proper COVID-19 vaccination policy. Methods: We performed plaque-reduction neutralizing tests (PRNTs) using sera from healthcare workers (HCWs) collected from baseline to six months after COVID-19 vaccination and from convalescent COVID-19 patients. The 20.2% of the mean PRNT titer of convalescent sera was used as 50% protective value, and the percentage of HCWs with protective immunity for each week (percent-week) was compared among vaccination groups. A correlation equation was deduced between a PRNT 50% neutralizing dose (ND50) against wild type (WT) SARS-CoV-2 and that of the Delta variant. Results: We conducted PRNTs on 1,287 serum samples from 297 HCWs (99 HCWs who received homologous ChAdOx1 vaccination (ChAd), 99 from HCWs who received homologous BNT162b2 (BNT), and 99 from HCWs who received heterologous ChAd followed by BNT (ChAd-BNT)). Using 365 serum samples from 116 convalescent COVID-19 patients, PRNT ND50 of 118.25 was derived as 50% protective value. The 6-month cumulative percentage of HCWs with protective immunity against WT SARS-CoV-2 was highest in the BNT group (2297.0 percent-week), followed by the ChAd-BNT (1576.8) and ChAd (1403.0) groups. In the inter-group comparison, protective percentage of the BNT group (median 96.0%, IQR 91.2-99.2%) was comparable to the ChAd-BNT group (median 85.4%, IQR 15.7-100%; P =0.117) and significantly higher than the ChAd group (median 60.1%, IQR 20.0-87.1%; P <0.001). When Delta PRNT was estimated using the correlation equation, protective immunity at the 6-month waning point was markedly decreased (28.3% for ChAd group, 52.5% for BNT, and 66.7% for ChAd-BNT). Conclusion: Decreased vaccine-induced protective immunity at the 6-month waning point and lesser response against the Delta variant may explain the Delta-dominated outbreak of late 2021. Follow-up studies for newly-emerging VOCs would also be needed.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines , Cohort Studies , Humans , Immunization, Passive , Kinetics , Pandemics , Prospective Studies , Republic of Korea/epidemiology , SARS-CoV-2 , Vaccination , COVID-19 Serotherapy
16.
Front Cell Infect Microbiol ; 12: 948014, 2022.
Article in English | MEDLINE | ID: covidwho-1963409

ABSTRACT

With the emergence and rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants, escaping vaccine-induced immunity is a concern. Three vaccination schedules, homologous or heterologous, have been initially applied due to an insufficient supply of vaccines in Korea. We investigated neutralizing activities against Omicron and Delta variants in each schedule. Three schedules using three doses of the BNT162b2 (BNT) or the ChAdOx1 (ChAd) vaccines include ChAd-ChAd-BNT, ChAd-BNT-BNT, and BNT-BNT-BNT. Neutralizing activities were evaluated using plaque-reduction neutralization test (PRNT) against wild type (WT) SARS-CoV-2, Delta variant, and Omicron variant. A total of 170 sera from 75 participants were tested, and the baseline characteristics of participants were not significantly different between groups. After the 2nd vaccine dose, geometric mean titers of PRNT ND50 against WT, Delta, and Omicron were highest after ChAd-BNT vaccination (2,463, 1,097, and 107) followed by BNT-BNT (2,364, 674, and 38) and ChAd-ChAd (449, 163, and 25). After the 3rd dose of BNT, the increase of PRNT ND50 against WT, Delta, and Omicron was most robust in ChAd-ChAd-BNT (4,632, 988, and 260), while the BNT-BNT-BNT group showed the most augmented neutralizing activity against Delta and Omicron variants (2,315 and 628). ChAd-BNT-BNT showed a slight increase of PRNT ND50 against WT, Delta, and Omicron (2,757, 1,279, and 230) compared to the 2nd dose. The results suggest that a 3rd BNT booster dose induced strengthened neutralizing activity against Delta and Omicron variants. The waning of cross-reactive neutralizing antibodies after the 3rd dose and the need for additional boosting should be further investigated.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Neutralization Tests , SARS-CoV-2/genetics , Vaccination
17.
Yonsei Med J ; 63(5): 430-439, 2022 May.
Article in English | MEDLINE | ID: covidwho-1883895

ABSTRACT

PURPOSE: Real-world experience with tocilizumab in combination with dexamethasone in patients with severe coronavirus disease (COVID-19) needs to be investigated. MATERIALS AND METHODS: A retrospective cohort study was conducted to evaluate the effect of severity-adjusted dosing of dexamethasone in combination with tocilizumab for severe COVID-19 from August 2020 to August 2021. The primary endpoint was 30-day clinical recovery, which was defined as no oxygen requirement or referral after recovery. RESULTS: A total of 66 patients were evaluated, including 33 patients in the dexamethasone (Dexa) group and 33 patients in the dexamethasone plus tocilizumab (DexaToci) group. The DexaToci group showed a statistically significant benefit in 30-day clinical recovery, compared to the Dexa group (p=0.024). In multivariable analyses, peak FiO2 within 3 days and tocilizumab combination were consistently significant for 30-day recovery (all p<0.05). The DexaToci group showed a significantly steeper decrease in FiO2 (-4.2±2.6) than the Dexa group (-2.7±2.6; p=0.021) by hospital day 15. The duration of oxygen requirement was significantly shorter in the DexaToci group than the Dexa group (median, 10.0 days vs. 17.0 days; p=0.006). Infectious complications and cellular and humoral immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the convalescence stage were not different between the two groups. CONCLUSION: A combination of severity-adjusted dexamethasone and tocilizumab for the treatment of severe COVID-19 improved clinical recovery without increasing infectious complications or hindering the immune response against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Dexamethasone/therapeutic use , Humans , Retrospective Studies , Treatment Outcome
18.
J Korean Med Sci ; 37(22): e175, 2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-1879451

ABSTRACT

BACKGROUND: Numerous patients around the globe are dying from coronavirus disease 2019 (COVID-19). While age is a known risk factor, risk analysis in the young generation is lacking. The present study aimed to evaluate the clinical features and mortality risk factors in younger patients (≤ 50 years) with a critical case of COVID-19 in comparison with those among older patients (> 50 years) in Korea. METHODS: We analyzed the data of adult patients only in critical condition (requiring high flow nasal cannula oxygen therapy or higher respiratory support) hospitalized with PCR-confirmed COVID-19 at 11 hospitals in Korea from July 1, 2021 to November 30, 2021 when the delta variant was a dominant strain. Patients' electronic medical records were reviewed to identify clinical characteristics. RESULTS: During the study period, 448 patients were enrolled. One hundred and forty-two were aged 50 years or younger (the younger group), while 306 were above 50 years of age (the older group). The most common pre-existing conditions in the younger group were diabetes mellitus and hypertension, and 69.7% of the patients had a body mass index (BMI) > 25 kg/m². Of 142 younger patients, 31 of 142 patients (21.8%, 19 women) did not have these pre-existing conditions. The overall case fatality rate among severity cases was 21.0%, and it differed according to age: 5.6% (n = 8/142) in the younger group, 28.1% in the older group, and 38% in the ≥ 65 years group. Age (odds ratio [OR], 7.902; 95% confidence interval [CI], 2.754-18.181), mechanical ventilation therapy (OR, 17.233; 95% CI, 8.439-35.192), highest creatinine > 1.5 mg/dL (OR, 17.631; 95% CI, 8.321-37.357), and combined blood stream infection (OR, 7.092; 95% CI, 1.061-18.181) were identified as independent predictors of mortality in total patients. Similar patterns were observed in age-specific analyses, but most results were statistically insignificant in multivariate analysis due to the low number of deaths in the younger group. The full vaccination rate was very low among study population (13.6%), and only three patients were fully vaccinated, with none of the patients who died having been fully vaccinated in the younger group. Seven of eight patients who died had a pre-existing condition or were obese (BMI > 25 kg/m²), and the one remaining patient died from a secondary infection. CONCLUSION: About 22% of the patients in the young critical group did not have an underlying disease or obesity, but the rate of obesity (BMI > 25 kg/m²) was high, with a fatality rate of 5.6%. The full vaccination rate was extremely low compared to the general population of the same age group, showing that non-vaccination has a grave impact on the progression of COVID-19 to a critical condition. The findings of this study highlight the need for measures to prevent critical progression of COVID-19, such as vaccinations and targeting young adults especially having risk factors.


Subject(s)
COVID-19 , Adult , Age Distribution , Aged , COVID-19/mortality , COVID-19/therapy , Female , Hospitalization , Humans , Male , Middle Aged , Obesity/complications , Risk Factors , SARS-CoV-2 , Young Adult
19.
Clin Microbiol Infect ; 28(10): 1390.e1-1390.e7, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1850888

ABSTRACT

OBJECTIVES: We assessed humoral responses and reactogenicity following the heterologous vaccination compared to the homologous vaccination groups. METHODS: We enrolled healthcare workers (HCWs) who were either vaccinated with ChAdOx1 followed by BNT162b2 (heterologous group) or 2 doses of ChAdOx1 (ChAdOx1 group) or BNT162b2 (BNT162b2 group). Immunogenicity was assessed by measuring antibody titers against receptor-binding domain (RBD) of SARS-CoV-2 spike protein in all participants and neutralizing antibody titer in 100 participants per group. Reactogenicity was evaluated by a questionnaire-based survey. RESULTS: We enrolled 499 HCWs (ChAdOx1, n = 199; BNT162b2, n = 200; heterologous ChAdOx1/BNT162b2, n = 100). The geometric mean titer of anti-receptor-binding domain antibody at 14 days after the booster dose was significantly higher in the heterologous group (11 780.55 binding antibody unit (BAU)/mL [95% CI, 10 891.52-12 742.14]) than in the ChAdOx1 (1561.51 [95% CI, 1415.03-1723.15]) or BNT162b2 (2895.90 [95% CI, 2664.01-3147.98]) groups (both p < 0.001). The neutralizing antibody titer of the heterologous group (geometric mean ND50, 2367.74 [95% CI, 1970.03-2845.74]) was comparable to that of the BNT162b2 group (2118.63 [95% CI, 1755.88-2556.32]; p > 0.05) but higher than that of the ChAdOx1 group (391.77 [95% CI, 326.16-470.59]; p < 0.001). Compared with those against wild-type SARS-CoV-2, the geometric mean neutralizing antibody titers against the Delta variant at 14 days after the boosting were reduced by 3.0-fold in the heterologous group (geometric mean ND50, 872.01 [95% CI, 685.33-1109.54]), 4.0-fold in the BNT162b2 group (337.93 [95% CI, 262.78-434.57]), and 3.2-fold in the ChAdOx1 group (206.61 [95% CI, 144.05-296.34]). The local or systemic reactogenicity after the booster dose in the heterologous group was higher than that of the ChAdOx1 group but comparable to that of the BNT162b2 group. DISCUSSION: Heterologous ChAdOx1 followed by BNT162b2 vaccination with a 12-week interval induced a robust humoral immune response against SARS-CoV-2, including the Delta variant, that was comparable to the homologous BNT162b2 vaccination and stronger than the homologous ChAdOx1 vaccination, with a tolerable reactogenicity profile.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination
20.
J Korean Med Sci ; 37(18): e134, 2022 May 09.
Article in English | MEDLINE | ID: covidwho-1834344

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is often accompanied by secondary infections, such as invasive aspergillosis. In this study, risk factors for developing COVID-19-associated pulmonary aspergillosis (CAPA) and their clinical outcomes were evaluated. METHODS: This multicenter retrospective cohort study included critically ill COVID-19 patients from July 2020 through March 2021. Critically ill patients were defined as patients requiring high-flow respiratory support or mechanical ventilation. CAPA was defined based on the 2020 European Confederation of Medical Mycology and the International Society for Human and Animal Mycology consensus criteria. Factors associated with CAPA were analyzed, and their clinical outcomes were adjusted by a propensity score-matched model. RESULTS: Among 187 eligible patients, 17 (9.1%) developed CAPA, which is equal to 33.10 per 10,000 patient-days. Sixteen patients received voriconazole-based antifungal treatment. In addition, 82.4% and 53.5% of patients with CAPA and without CAPA, respectively, received early high-dose corticosteroids (P = 0.022). In multivariable analysis, initial 10-day cumulative steroid dose > 60 mg of dexamethasone or dexamethasone equivalent dose) (adjusted odds ratio [OR], 3.77; 95% confidence interval [CI], 1.03-13.79) and chronic pulmonary disease (adjusted OR, 4.20; 95% CI, 1.26-14.02) were independently associated with CAPA. Tendencies of higher 90-day overall mortality (54.3% vs. 35.2%, P = 0.346) and lower respiratory support-free rate were observed in patients with CAPA (76.3% vs. 54.9%, P = 0.089). CONCLUSION: Our study showed that the dose of corticosteroid use might be a risk factor for CAPA development and the possibility of CAPA contributing to adverse outcomes in critically ill COVID-19 patients.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Animals , COVID-19/complications , Critical Illness , Dexamethasone/therapeutic use , Humans , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/complications , Retrospective Studies , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL